Theory on the mechanism of rapid binding of transcription factor proteins at specific-sites on DNA
نویسنده
چکیده
Theory on the rapid binding mechanism of DNA-protein interactions 2 ABSTRACT We develop revised theoretical ideas on the mechanism by which the transcription factor proteins locate their specific binding sites on DNA faster than the three-dimensional (3D) diffusion controlled rate limit. We demonstrate that the 3D-diffusion controlled rate limit can be enhanced when the protein molecule reads several possible binding stretches of the template DNA via one-dimensional (1D) diffusion upon each 3D-diffusion mediated collision or nonspecific binding event. The overall enhancement of site-specific association rate is directly proportional to the maximum possible sliding length (L A , square root of (6D o /k r) where D o is the 1D-diffusion coefficient and k r is the dissociation rate constant associated with the nonspecific DNA-protein complex) associated with the 1D-diffusion of protein molecule along DNA. Upon considering several possible mechanisms we find that the DNA binding proteins can efficiently locate their cognate sites on DNA by switching across fast-moving, slow-moving and reading states of their DNA binding domains in a cyclic manner. Irrespective of the type of mechanism the overall rate enhancement factor asymptotically approaches a limiting value which is directly proportional to L A as the total length of DNA that contains the cognate site increases. These results are consistent with the in vitro experimental observations.
منابع مشابه
Evaluation of MYB93 and MAD8 Genes in Transgenic and Non-Transgenic Rice
Increasing drought tolerance, especially in rice, which is one of the most important crops in Asia, is necessary. Transcription factors are specific sequence DNA-binding proteins that are capable of activating or suppressing transcription. These proteins regulate gene expression levels by binding to cis regulatory elements in the promoter of target genes to control various biological processes ...
متن کاملIdentification of RNA-binding sites in artemin based on docking energy landscapes and molecular dynamics simulation
There are questions concerning the functions of artemin, an abundant stress protein found in Artemiaduring embryo development. It has been reported that artemin binds RNA at high temperatures in vitro, suggesting an RNA protective role. In this study, we investigated the possibility of the presence of RNA-bindingsites and their structural properties in artemin, using docking energy ...
متن کاملMapping of Transcription Factor Binding Region of Kappa Casein (CSN3) Gene in Iranian Bacterianus and Dromedaries Camels
κ-casein is a glycosilated protein in mammalian milk that plays an essential role in the milk micelles. Control of κ-casein expression reflects this essential role, although an understanding of the mechanisms involved lags behind that of the other milk protein genes. Transcriptional regulation, a first mechanism for controlling the development of organisms, is carried out by transcription facto...
متن کاملMapping of Transcription Factor Binding Region of Kappa Casein (CSN3) Gene in Iranian Bacterianus and Dromedaries Camels
κ-casein is a glycosilated protein in mammalian milk that plays an essential role in the milk micelles. Control of κ-casein expression reflects this essential role, although an understanding of the mechanisms involved lags behind that of the other milk protein genes. Transcriptional regulation, a first mechanism for controlling the development of organisms, is carried out by transcription facto...
متن کاملRapid purification of HU protein from Halobacillus karajensis
The histone-like protein HU is the most-abundant DNA-binding protein in bacteria. The HU protein non-specifically binds and bends DNA as a hetero- or homodimer, and can participate in DNA supercoiling and DNA condensation. It also takes part in DNA functions such as replication, recombination, and repair. HU does not recognize any specific sequences but shows a certain degree of specificity to ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014